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Generalization Performance of Regularized Ranking
With Multiscale Kernels

Yicong Zhou, Senior Member, IEEE, Hong Chen, Rushi Lan, and Zhibin Pan

Abstract— The regularized kernel method for the ranking
problem has attracted increasing attentions in machine learning.
The previous regularized ranking algorithms are usually based
on reproducing kernel Hilbert spaces with a single kernel. In this
paper, we go beyond this framework by investigating the gener-
alization performance of the regularized ranking with multiscale
kernels. A novel ranking algorithm with multiscale kernels is
proposed and its representer theorem is proved. We establish
the upper bound of the generalization error in terms of the
complexity of hypothesis spaces. It shows that the multiscale
ranking algorithm can achieve satisfactory learning rates under
mild conditions. Experiments demonstrate the effectiveness of the
proposed method for drug discovery and recommendation tasks.

Index Terms— Drug discovery, generalization performance,
multiscale kernel, ranking, recommendation tasks, reproducing
kernel Hilbert space (RKHS).

I. INTRODUCTION

MACHINE learning methods for ranking have attracted
more and more attentions in information retrieval and

search engines. From the viewpoint of machine learning,
the goal of ranking is to search a score function such that
the predicted orders of two inputs are consistent as possible
as the true relations. Following this purpose, many ranking
algorithms have been proposed from different perspectives.
Examples include ranking support vector machine
(RankSVM) [20], [22], RankNet [4], [5], RankBoost [18],
MPRank [12], [13], RankRLS [26], [27], the gradient descent
ranking algorithms [8], [28], the P-norm push ranking [31],
and the multiparte ranking [23].

Among these algorithms, the regularized ranking scheme
with least square ranking loss has been used widely in various
ranking tasks [1], [6], [8], [12], [13]. Similar to the least square
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regularized regression in [14], [16], and [41], these regularized
ranking algorithms depend heavily on the reproducing kernel
Hilbert spaces (RKHSs) associated with Mercer kernels. It is
well known that the flat nonlinear functions can be well
approximated by RKHSs with Gaussian kernels. However, as
shown in [41] and [45], it is unsuitable to use the single
Gaussian kernel to approximate the nonflat functions including
the smooth and steep variations. Under this setting, the learned
function is difficult to approximate the smooth and steep
portions simultaneously.

Multikernel methods have been used successfully in many
fields of learning systems [17], [34], [40]. In the regression
problem, there are extensive studies on experiments and theory
for the nonflat function approximation [7], [41], [42], [45].
These studies show that the multiscale kernel methods are
more efficient than the corresponding algorithms with a
single kernel. The candidates of multiscale kernels could be
Gaussian kernels with different widths, frame-based kernels,
and wavelet-based kernels. For the ranking task, the multiscale
kernel can achieve better performance than the single kernel
when the intrinsic optimal predictor is a nonflat function.
However, for the regularized ranking problem in RKHSs,
as we know, there is no work on this multiscale theme for
algorithm design and generalization analysis.

It is well known that generalization performance is an
important measure to evaluate the learning ability of machine
learning algorithms [16], [24], [25], [35], [36], [43]. Recently,
generalization error analysis also attracts increasing attentions
in the ranking problem. The techniques of error analysis
for ranking problem mainly include stability analysis
in [1] and [11]–[13], uniform convergence estimate based on
the capacity of hypothesis spaces [10], [19], [29], [30], [44],
and approximation estimate based on the operator approxi-
mation in [6] and [8]. Although these progresses on gener-
alization analysis have been made, the theoretical results for
these regularized kernel methods only focus on ranking in a
single-kernel-based RKHS [1], [6], [8], [12], [13].

Actually, the target ranking function with high- and
low-frequency components can be approximated by small-
and large-scale kernels, respectively. Inspired by the studies
of multiscale kernels in [41], we propose a multiscale least
square regularized ranking (MLSRRank) algorithm to realize
efficient ranking, which extends the regularized ranking in [12]
to the multikernel setting. The estimates of the generalization
error are established based on the covering numbers of
multiple-kernel-based RKHSs. In particular, the analysis of
learning rates is given for the RKHSs with Gaussian kernels.

2162-237X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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The experimental studies on several data sets demonstrate
the effectiveness of our proposed algorithm. To the best of
our knowledge, this paper is among the first endeavors on
generalization performance analysis for the multiscale ranking.

In summary, the main contributions of this paper are listed
as follows.

1) A novel multiscale framework for ranking is proposed,
and its representer theorem is proved. This theorem
provides a simple and fast way to implement the
proposed algorithm.

2) Generalization error analysis of MLSRRank is
established in terms of the capacity of hypothesis spaces.
From our error analysis, we know that the MLSRRank
can reach satisfactory learning rates under mild
conditions.

3) Experimental evaluations on benchmark data sets
demonstrate the effectiveness of MLSRRank. This
extends the effectiveness analysis of the multiscale
kernel for regression [41] to the ranking setting.

The rest of this paper is organized as follows. In Section II,
we introduce some necessary background of ranking, and
propose MLSRRank. The representer theorem is also given.
In Section III, the theoretical results on generalization perfor-
mance are stated. In Section IV, we present the experimental
results on the real-world data sets. Finally, we close this paper
with a brief conclusion in Section V.

II. MULTISCALE REGULARIZED RANKING ALGORITHM

Now, we recall some basic concepts of ranking (see [1]
and references therein for details). Let X ∈ R

d be a compact
metric space and Y = [0, M] for some M > 0. The relation
between the input x ∈ X and the output y ∈ Y is described
by a probability distribution ρ(x, y) on Z := X × Y . Given
samples z := {zi }m

i=1 = {(xi , yi )}m
i=1 ∈ Zm independently

drawn according to ρ, the ranking problem aims at finding a
function f : X → R that ranks future input instances with
larger labels higher than those with smaller labels. x is to be
ranked preferred over x ′ if y − y ′ > 0 and lower than x ′ if
y − y ′ < 0. In particular, y − y ′ = 0 indicates no ranking
preference between the two input instances.

For any z = (x, y), z′ = (x ′, y ′) in Z , we consider the least
square ranking loss

�( f, z, z′) = (y − y ′ − ( f (x) − f (x ′)))2. (1)

The expected risk of a ranking function f is defined as

E( f )=
∫
Z

∫
Z

(y − y ′−( f (x) − f (x ′)))2dρ(x, y)dρ(x ′, y ′).

(2)

The algorithms discussed in this paper are based on a
Tikhonov regularization scheme associated with a Mercer
kernel. We usually call a symmetric and positive semidefinite
continuous function K : X × X → R a Mercer kernel. The
RKHS HK associated with the kernel K is defined (see [3])
to be the closure of the linear span of the set of functions
{K (x, ·) : x ∈ X } with the inner product 〈 ·, · 〉K given by
〈K (x, ·), K (x ′, ·)〉K = K (x, x ′). The reproducing property of
RKHS tells us that f (x) = 〈 f, K (x, ·)〉K.

A. Least Square Regularized Ranking Algorithm

Given z and a ranking function f , the empirical ranking
risk is defined as

Ez( f ) = 1

m2

m∑
i, j=1

(yi − y j − ( f (xi ) − f (x j )))
2. (3)

Observe that Ez( f ) in (3) can be considered as the discrete
version of (m − 1/m)E( f ). That is to say EEz( f ) =
(m − 1/m)E( f ) according to definitions (2) and (3).

The LSRRank algorithm is defined as the minimizer
in HK [1], [6], [8]

fz := fz,λ = arg min
f ∈HK

{Ez( f ) + λ‖ f ‖2
K

}
(4)

where λ > 0 is the regularization parameter.
In fact, LSRRank is a special case of MPRank in [12] with

the least square ranking loss defined in (1). To highlight the
feature of this loss function, we call algorithm (4) LSRRank.
In addition, the difference between LSRRank and RankRLS
is that the former considers the empirical risk associated with
all input pairs, while the latter only includes the input pairs
that are relevant to the task in the question [27].

Denote D = m I − 11T , where I is an m-order unit matrix
and 1 = (1, . . . , 1)T ∈ R

m . Meanwhile, denote Y = (yi )
m
i=1 =

(y1, . . . , ym)T and denote K as an m-order matrix whose (i, j)
entry is K (xi , x j ).

By means of the properties of RKHSs, we can get the
representer theorem for the minimizer fz in (4). A similar
result can be found in [6]. For completeness, we present the
proof in Appendix A.

Lemma 1: The minimizer fz in (4) can be represented as

fz(x) =
m∑

i=1

αz,i K (xi , x)

where αz = (αz,1, . . . , αz,m )T ∈ R
m is the unique solution of

the linear system(
DK + m2

2
λI

)
α = DY. (5)

Set ỹi = 2yi − (2/m)
∑m

k=1 yk and K̃ (xi , x j ) =
2K (xi , x j ) − (2/m)

∑m
k=1 K (xi , xk). From linear system (5)

in Lemma 1, we can get

(K̃ + mλI )α = Ỹ .

An interesting observation is that this equation is externally
similar to the least square regularized regression in [41].
In fact, some relationships are also given in [21] for the
expected risks between ranking and regression.

B. Multiscale Least Square Regularized Ranking Algorithm

Although the ranking algorithm (4) is used widely in the
ranking problem, it might be difficult to search the target
function with the high- and low-frequency components
simultaneously. The same difficulty for regression algorithms
is overcome by learning the frameworks with multiscale
kernels [41], [42]. In this paper, we use the idea of multiscale
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kernels to propose an algorithm for learning a ranking
function.

The MLSRRank algorithm is implemented under a
regularized framework in a sum space of RKHSs. Define the
sum space of HKt for t = 1, . . . , l as

H⊕ = HK1 ⊕ · · · ⊕ HKl =
{

f : f =
l∑

t=1

ft , ft ∈ HKt

}

where Kt is a Mercer kernel. For f ∈ H⊕ and
v ∈ V = {(v1, . . . , vl )

T | min{vt , t = 1, . . . , l} = 1}, we
define a norm ‖ · ‖⊕,v on H⊕ as

‖ f ‖2⊕,v = min

{
l∑

t=1

vt‖ ft ‖2
Kt

: f =
l∑

t=1

ft , ft ∈ HKt

}
.

For the given sample z and the regularization parameter λ,
the MLSRRank is defined as the minimizer of the following
regularized framework:

fz,⊕ := fz,λ,⊕,v = arg min
f ∈H⊕

{Ez( f ) + λ‖ f ‖2⊕,v

}
. (6)

Denote

A =
⎛
⎝ mλv1 I + 2

m DK1 . . . 2
m DKl

. . . . . . . . .
2
m DK1 . . . mλvl I + 2

m DKl

⎞
⎠

where Kt is an m-order matrix whose (i, j) entry is Kt (xi , x j ).
In terms of the properties of RKHSs, we can get the expres-

sion of fz,⊕ as follows. The proof can be found in Appendix B.
Theorem 1: The minimizer fz,⊕ in (6) can be represented

as fz,⊕ = ∑l
t=1 ft , where

ft =
m∑

i=1

αt
z,i Kt (xi , x), t = 1, . . . , l

and αt
z = (αt

z,1, . . . , α
t
z,m )T ∈ R

m is the unique solution of
the linear system

A

⎛
⎝ α1

. . .

αl

⎞
⎠ =

⎛
⎝

2
m DY
. . .

2
m DY

⎞
⎠. (7)

From Theorem 1, we know that MLSRRank can be
implemented easily through the above linear system. The
effects of different scale kernels are adjusted by parameters vt ,
t = 1, . . . , l.

III. GENERALIZATION ERROR ANALYSIS

In this section, we will estimate the upper bound of the
generalization error for fz,⊕. In order to adapt to more general
ranking tasks, first, we present the generalization error analysis
for the general convex losses. Then, we apply the derived result
to obtain the generalization analysis of MLSRRank.

For analysis, we introduce the following condition of the
loss function used in [1] and [44].

Definition 1: Let F be a class of real-valued functions on X
and let L > 0. We say that the ranking loss � is L-admissible
with respect to F if for all g1, g2 ∈ F , z, z′ ∈ Z

|�(g1, z, z′) − �(g2, z, z′)| ≤ L(|g1(x) − g2(x)|
+|g1(x ′) − g2(x ′)|).

It is worth noting that the least square ranking loss
(y−y ′−( f (x)− f (x ′)))2 is (2M+ 4r) admissible with respect
to the uniform-bounded function set { f ∈ F : ‖ f ‖∞ ≤ r}.

For the general loss function �, we denote the expected
risk as

E�( f ) =
∫
Z

∫
Z

�( f, z, z′)dρdρ

and denote the corresponding empirical risk as

E�
z ( f ) = 2

m(m − 1)

m−1∑
i=1

m∑
j=i+1

�( f, zi , z j ).

Based on the MLSRRank (6), the multiscale algorithm with
the general loss � can be written as

f �
z,⊕ := f �

z,γ ,⊕,v = arg min
f ∈H⊕

{E�
z ( f ) + γ ‖ f ‖2⊕,v

}
(8)

where γ > 0 is a regularization parameter.
Remark 1: For �( f, z, z′) = (y − y ′ − ( f (x)− f (x ′)))2, we

can see that Ez( f ) = (m − 1/m)E�
z ( f ) and E( f ) = E�( f ).

Then, fz,⊕ = f �
z,γ ,⊕,v for γ = (m/m − 1)λ. Hence, the

analysis result of E�( f �
z,⊕) can be used to estimate E( fz,⊕).

We estimate the excess error E�( f �
z,⊕) − E�( f ∗), where

f ∗ is the minimizer of E�( f ) over all measurable functions.
Now, some necessary notations are introduced. Denote the

regularization functions in HKt (t = 1, 2 . . . l,) and H⊕ as

f �
γ,Kt

= arg min
f ∈HKt

{E�( f ) + γ ‖ f ‖2
Kt

}

and

f �
γ,⊕ = arg min

f ∈H⊕

{E�( f ) + γ ‖ f ‖2⊕,v

}
.

Denote the corresponding regularization errors as

DKt (γ ) = min
f ∈HKt

{E�( f ) − E�( f ∗) + γ ‖ f ‖2
Kt

}

and

D⊕,v (γ ) = min
f ∈H⊕

{E�( f ) − E�( f ∗) + γ ‖ f ‖2⊕,v

}
.

The following error decomposition for the excess error can
be obtained in terms of the definitions of f �

z,⊕ and f �
γ,⊕.

Proposition 1: Following the definitions of f �
z,⊕ and f ∗,

we have:
E�

(
f �
z,⊕

) − E�( f ∗) ≤ {E�
(

f �
z,⊕

) − E�
z
(

f �
z,⊕

)}
+{E�

z
(

f �
γ,⊕

) − E�
(

f �
γ,⊕

)} + D⊕,v (γ ).

(9)
In the remainder of this section, we will focus on the

estimates of the first and second terms on the right-hand
side of (9).
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With the same technique used in [44], we can obtain the
estimate of E�

z ( f �
γ,⊕)−E�( f �

γ,⊕) by applying the McDiarmid’s
inequality. The proof is presented in Appendix C. In fact, the
similar result also can be derived by the Hoeffding’s inequality
of U -statistic [10].

Proposition 2: Let κ = supx,x ′∈X ,t∈{1,...,l} Kt (x, x ′) and
v ∈ V = {(v1, . . . , vl )

T | min{vt , t = 1, . . . , l} = 1}. For any
0 < δ ≤ 1, there holds with confidence at least 1 − δ

E�
z
(

f �
γ,⊕

) − E�
(

f �
γ,⊕

) ≤ M1

√
2 ln(1/δ)

m

where M1 = supz,z′∈Z ,‖ f ‖∞≤κ(l D⊕,v (γ )/γ )1/2 |�( f, z, z′)|.
In order to derive the estimate of E�( f �

z,⊕) − E�
z ( f �

z,⊕), we
need to give the complexity measure of H⊕. Here, we use the
covering number (see [14], [16], [46]) to measure the capacity
of the sum space.

Definition 2: For ε > 0, the covering number N (H, ε) is
defined to be the smallest integer l ∈ N such that there exist
l disks in C(X ) with the radius ε and centers in H covering
the set H.

Denote BKt ,R = { f : f ∈ HKt , ‖ f ‖Kt ≤ R} and
B⊕,v,R = { f : f ∈ H⊕, ‖ f ‖⊕,v ≤ R}.

The following concentration estimation on H⊕ will be
proved in Appendix D.

Proposition 3: For R = (M/
√

γ ), denote M2 =
supz,z′∈Z, f ∈B⊕,v,R

|�( f, z, z′)|. For all ε > 0

Prob
z∈Zm

{E�
(

f �
z,⊕

) − E�
z
(

f �
z,⊕

)
> ε

}

≤ N
(

B⊕,v,R,
ε

4L

)
exp

{
− mε2

8M2
2

}

where L = 2M + 4κ R.
It is the position to present the error estimate of f �

z,⊕.
The proof can be found in Appendix E.

Theorem 2: Let H⊕ be the sum space of RKHSs with
Gaussian kernels Kt (x, x ′) = exp{−‖x − x ′‖/μ2

t } for
t = 1, . . . , l and μ1 < μ2 < · · · < μl . For any 0 < δ < 1,
E�( f �

z,⊕) − E�( f ∗) can be bounded by

M1

√
2 ln(1/δ)

m
+ max

⎧⎨
⎩2M2

√
Cdlμ−2(d+1)

1 + ln(1/δ)

m

+
(

4lκ L
M√
γ

) s
2+s

(
4Cdl M2

2

m

) 1
2+s

⎫⎬
⎭ + D⊕,v (γ )

with confidence at least 1 − δ. Here, Cd is a parameter
depending on the dimension d , and s > 0 is a parameter
that can be close to 0.

Based on Remark 1, we can get the following convergence
analysis from Theorem 2 directly.

Theorem 3: Let H⊕ be the sum space of RKHSs with
Gaussian kernels Kt (x, x ′) = exp{−‖x − x ′‖/μ2

t } for
t = 1, . . . , l and μ1 < μ2 < · · · < μl . Assume that
D⊕,v ((m − 1/mλ) ≤ cβλβ for some 0 < β < 1. Choosing
λ = m−ε , for any 0 < δ < 1, we have

E( fz,⊕) − E( f ∗) ≤ Cm− min
{
βε, 1

2 −(1−β)ε, (1−2ε)
2 , 1

2+s − 8+3s
4+2s ε

}

with confidence at least 1 − δ, where the constant C is
independent of m and s > 0 is a parameter that can be
arbitrarily small.

Remark 2: MLSRRank can achieve the convergence rate
O(m− min{ε,(1/2+s)−(8+3s/4+2s)ε}) when β → 1. In particular,
choosing ε = (2/12 + 7s), and s = 1, the convergence rate
O(m−(1/6)) can be reached. The polynomial decay rate is
satisfactory for the machine learning algorithms.

Recently, a nice generalization bound is obtained for the
kernel-based regularized ranking [29, Example 3]. Although
our analysis cannot reach this fast convergence rate, it is based
on a different loss function. Moreover, our result does not
require the variance-expectation bound condition for the loss
function and distribution in [29].

Remark 3: Denote by F the measurable function space,
and define G = { f ∗ ∈ F : f ∗ = arg min f ∈F E( f )}
as the target function set. We can observe that the target
function f ∗ is not unique and the regression function fρ ∈ G
(see [8], [21]), where

fρ(x) =
∫
Y

ydρ(y|x), x ∈ X .

It is easy to deduce that

D⊕,v (λ) = min
f ∈H⊕

{E( f ) − E( fρ) + λ‖ f ‖2⊕,v

}

≤ 4 min
f ∈H⊕

{∫
( f (x) − fρ(x))2dρ + λ‖ f ‖2⊕,v

}
.

Hence, the assumption of D⊕,v (λ) in Theorem 2 is consistent
with the previous approximation assumption in the least square
regression [7], [16], [37], [38], [41], [42]. Moreover, the
derived learning rate here can be improved by the iterative
technique in [7], [32], [37], and [38].

Remark 4: The error analysis established here is inspired
from the theoretical studies in [41] for the least square regu-
larized regression. There is a key difference between our work
and that in [41]. In the ranking problem, the empirical risk is
measured on pairs of samples and cannot be expressed as a
sum of independent random variables. Hence, the concentra-
tion inequalities used in [41] for the regression problem cannot
be used to characterize the convergence of ranking directly.
The theoretical analysis of ranking is more complicated than
the regression setting.

IV. EXPERIMENTS

In this section, we evaluate MLSRRank on several
benchmark data sets on the drug discovery and recommenda-
tion tasks. The experimental results show that the MLSRRank
can achieve competitive performance compared with several
state-of-the-art ranking algorithms.

A. Algorithm and Parameter Selection

From Theorem 1, we know that the explicit computation
steps of MLSRRank can be summarized in Algorithm 1.

In the experiments, we choose the Gaussian kernels with
different widths as the candidate multiscale kernels. Here,
we denote the width of a Gaussian kernel by σ and denote
the regularization parameter by λ. The width parameter σ
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Algorithm 1 Multiscale Least Square Regularized Ranking
Algorithm (MLSRRank)
Require:

Training set z = {(xi , yi )}m
i=1, kernel functions Kt ,

a regularization parameter λ > 0, and v ∈ V ={
(v1, . . . , vl)

T | min{vt , t = 1, . . . , l} = 1
}

.

1: Computing the necessary matrices:
D = m I − 11T ; DY ; Kt = (Kt (xi , x j ))

m
i, j=1, DKt .

2: Solving the linear system (7) to derive αt
z =

(αt
z,1, . . . , α

t
z,m)T ∈ R

m , t = 1, . . . , l.
3: return A ranking function

fz,⊕(x) =
l∑

t=1

m∑
i=1

αt
z,i Kt (xi , x).

in the Gaussian kernel is selected from {4−3, 4−2, . . . , 43},
and the regularization parameter λ is selected from
{10−5, 10−4, . . . , 101}. For simplicity, we choose l = 2 in all
experiments. Given parameters λ, σ1, σ2, v1, and v2, we solve
linear system (7) to obtain the predictive function f and then
evaluate the predictive performance on the test samples. For
the data sets of drug discovery, we select the parameter by
the cross validation from the training samples to illustrate the
effectiveness of MLSRRank compared with other algorithms.
Moreover, for the data sets of the recommendation system, we
select the parameters as those resulting in the best predictive
performance for LSRRank and MLSRRank.

B. Empirical Evaluation for QSAR Analysis

The experiments are based on two quantitative structure-
activity relationship (QSAR) data sets, including inhibitors
of dihydrofolate reductase (DHFR) and cyclooxygenase-2
(COX2), which correspond to the biological activities repre-
sented as pIC50 values [2], [33].

1) Data Sets and Evaluation Procedures: The DHFR
inhibitor data set contains 361 compounds, with pIC50 values
belonging to (3.3, 9.8); the COX2 inhibitor data set contains
282 compounds with pIC50 values belonging to (4, 9). For the
DHFR data set, 237 out of 361 compounds are used as the
training set and the remaining compounds are assigned to
the test set. For the COX2 data set, 188 of 292 compounds are
used as the training set and the rest of the compounds form
the test set. Each compound in two data sets is represented by
the 2.5-D chemical descriptors in [33]. Details of the data can
be found in [33] and the references therein.

The DHFR inhibitor data set contains 70 real-valued
descriptors, and the COX2 inhibitor data set contains
74 real-valued descriptors. In our experiments, each of these
descriptors is scaled to (0, 1). In our experiments, we follow
the same setup in [2].

2) Methods for Comparison: Here, we implement the
algorithms of MLSRRank and compare the derived
results with the results of RankSVM and support vector
regression (SVR) in [2].

1) RankSVM [2], [22]: RankSVM for real-valued labels
is a regularized ranking model. The dual formulation of
this model leads to a convex quadratic program, and can
be solved by a standard quadratic program solver or a
gradient projection algorithm [2].

2) SVR-Based Ranking: SVR [36] can be used to learn a
prediction function directly, and then rank the instances
in a decreasing order of the predicted values. The
selections of the kernel function and the regularization
parameter are necessary to implement this algorithm.

3) Performance Measures: Denote T = {(xi , yi )}m′
i=1 as a

test set and f as a predictive function. The following measures
are used to evaluate the ranking performance [2].

1) Ranking Error: The ranking error is defined as

1

|P|
∑

(i, j )∈P

(yi − y j )

(
1 f (xi )< f (x j ) + 1

2
1 f (xi )= f (x j )

)
.

where P = {(i, j)|yi > y j } denotes the set of preference
pairs in T .

2) Pearson Correlation Coefficient: Let μ f and σ f be the
mean and standard deviation of f , respectively. Let
μy and σy be the mean and standard deviation of y,
respectively. The correlation coefficient is defined as

1

m′ − 1

m′∑
i=1

( f (xi ) − μ f )(yi − μy)

σ f σy
.

3) Kendall’s τ : Kendall’s τ is defined as the ratio of the
number of concordant pairs subtracted by the number
of discordant pairs in the total number of all pairs. The
Kendall’s τ can be given by

2

|P|
∑

(i, j )∈P

(
1 f (xi )< f (x j ) + 1

2
1 f (xi )= f (x j )

)
− 1

if ties in the learned ranking are broken uniformly at
random.

4) Spearman’s ρ: Let β f (i) be the rank of xi in the ranking
returned by f and let βy(i) be the rank of xi in the
ranking based on the actual activities. The Spearman’s ρ
coefficient is defined as

1

m′ − 1

m′∑
i=1

(
β f (i) − μ′

f

)(
βy(i) − μ′

y

)
σ ′

f σ
′
y

.

In fact, it is the Pearson correlation between the vectors
β f = ( f (1), . . . , f (m′)) and βy = (y(1), . . . , y(m′)).

The Pearson correlation coefficient, the Kendall’s τ ,
and Spearman’s ρ belong to (−1, 1), where 1 represents
perfect agreement and −1 represents perfect disagreement.
For simplicity, we denote these four measures as error,
corr, τ , and ρ.

4) Experimental Results: The experimental procedures
follow exactly the same setup in [2]. The results on ranking
performance are summarized in Tables I and II. Those results
of RankSVM and SVR come from [2] according to the above-
mentioned performance measures. For the DHFR data set,
the optimal parameters σ1 = 16, σ2 = 64, λ = 0.001, v1 = 1,
and v2 = 0.5 are obtained by the cross validation. For the
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TABLE I

QSAR RANKING RESULTS ON ORIGINAL SPLITS

IN THE DHFR DATA SET

TABLE II

QSAR RANKING RESULTS ON ORIGINAL SPLITS

IN THE COX2 DATA SET

COX2 data set, we choose σ1 = 64, σ2 = 64, λ = 0.01, and
v1 = v2 = 2 by the cross validation for prediction.

From these experimental results, we can see that
MLSRRank has the best performance on the COX2 data
set and the RankSVM reaches the best performance on the
DHFR data set. Meanwhile, MLSRRank has shown better
performance than LSRRank, especially for the DHFR data set.
In fact, only the optimal predictor is a nonflat function, and
the multiscale method can improve the learning performance
of the single-kernel methods. Hence, the effectiveness of
MLSRRank is depended on the characteristics of data sets.
The results also indicate that the hinge loss is more suitable
for the DHFR data set than the least square loss. However,
MLSRRank can achieve better performance than SVR and
SGDRank associated with least square losses.

In order to better understand the predictive performance
of MLSRRank, we further present the experimental results
with different numbers of training samples. For simplicity,
we use the parameters selected in the previous experiment.
Ten samples are selected as the labeled data at random
from the original training set. The remaining training data
is considered as the unlabeled data. Then, we test it on the
original test set. All the performance evaluations are recorded.
We then train MLSRRank on 20 training samples, 30 training
samples, and so on. Each time, we add ten training samples.
We repeat the whole process 30 times, and report the mean
results in Fig. 1.

From Fig. 1, we can see that the MLSRRank can reach
better predictive performance with larger numbers of training
samples. This phenomenon is consistent with the theoretical
analysis, and shows that the proposed algorithm can exploit
the data information sufficiently.

C. Empirical Evaluation for the Recommendation Task

To better compare the generalization ability of LSRRank
and MLSRRank, we evaluate their best performance
on the data sets for the recommendation task. The
recommendation task is aiming to provide a given user
a list of unseen movies/jokes/books ordered by the

Fig. 1. Performance of MLSRRank versus the number of training samples.

predicted preference. The experimental setup used here
is the same with [12]. All data sets are available at:
http://www.grouplens.org/taxonomy/term/14.

1) Data Sets and Evaluation Procedures: The MovieLens
data set contains 1 000 209 anonymous ratings of 3883 movies
made by 6040 MovieLens users. Rating is an integer belonging
to {1, . . . , 5}. Only part of the movies is rated. The Jester
Joke Recommender System data set contains 4.1 million
continuous ratings ranging from −10 to 10 of 100 jokes
from 73 421 users. The book-crossing data set contains
278 858 users and 1 149 780 ratings for 271 379 books.

For the MovieLens data set, the reviewers are grouped into
20–40 movies, 40–60 movies, and 60–80 movies based on
the number of movies they had reviewed. The users, reviewed
between 50 and 300 movies, are selected as the test reviewers
used in our experiment. For a given test reviewer, we chose
300 reference reviewers randomly from one of these three
groups and use their ratings to form the input vectors. Half of
the test reviewer’s movie ratings are used for training and the
other half is used for testing; 300 different test reviewers are
selected at random, and we recorded the average performance.
For stability, we repeated the experiments ten times. The
mean values and standard deviations are reported for each
of the three groups after ten repeated experiments. For the
Jester Joke Recommender System data set, we also establish
the evaluation procedure with the same way as above.

For the book-crossing data set, we only select those users
who have reviewed at least 200 books, and then only consider
books with at least ten reviews. We finally obtain a data



ZHOU et al.: GENERALIZATION PERFORMANCE OF REGULARIZED RANKING WITH MULTISCALE KERNELS 999

TABLE III

COMPARISON OF LSRRANK AND MLSRRANK (MEAN AND STANDARD DEVIATIONS)

set of 87 books and 130 reviewers. For this data set,
we choose one of 129 reviewers as a test reviewer each
time, and use other 129 reviewers as reference reviewers.
We report the mean values and standard deviations based on
130 leave-one-out experiments.

2) Performance Measures: In order to evaluate the
magnitude-preserving algorithms (LSRRank and MLSRRank),
we introduce the following measures used in [12]. Here, we
set {(xi , yi )}m′

i=1 as a test set and set f as a predictive function.
1) Mean Squared Difference (MSD): The MSD is

defined as

1

m′2
m′∑

i, j=1

((yi − y j ) − ( f (xi ) − f (x j )))
2.

2) Mean 1-Norm Difference (M1D): The M1D over all
pairs is defined as

1

m′2
m′∑

i, j=1

|(yi − y j ) − ( f (xi) − f (x j ))|.

3) Experimental Results: The experiments are used to
describe the learning ability of the MLSRRank with respect
to the magnitude-preserving measures MSD and M1D. The
experimental results are reported in Table III. We can observe
that in terms of MSD and M1D, MLSRRank outperforms
LSRRank. This demonstrates that MLSRRank usually has
better generalization performance than the corresponding
algorithm with a single kernel for the recommendation tasks.

V. CONCLUSION

We have introduced an algorithm that learns ranking
functions from the samples by the multiscale-kernel-based
regularization framework. The implementation of the
algorithm is simple and its representer theorem has been
provided. In terms of the covering numbers of sum spaces,
we presented the upper bound of the generalization error.
Experiments performed on public data sets have demonstrated
the effectiveness of the proposed algorithm.

Along the line of this paper, some improvements are
necessary for future study that we discuss in the following.

1) Design the Algorithm for Parameter Selection: For the
proposed multiscale ranking, five different parameters
need to be selected based on the training data. Hence,
a selection algorithm should be given to reduce the
computation complexity. This is closely related to the
recent studies in [40] and [41].

2) Design the Sampling Method for Ranking: In this paper,
it is assumed that the training data are sampled in

an independent identically distributed (i.i.d.) manner.
Usually, the sampling technique in machine learning
can draw important samples to training and reduce the
requirement of the number of training data. Hence, it
is crucial to find a reasonable way to realize efficient
sampling for ranking, and extend the generalization
analysis to non-i.i.d. samples. Recently, there are some
advances along this line for fisher linear discriminant
in [47] and online SVM in [39].

APPENDIX A
PROOF OF LEMMA 1

Proof: Define the sampling operator Sx : HK → R
m

associated with a discrete subset x = {xi }m
i=1 of X by

Sx( f ) = ( f (xi))
m
i=1 = ( f (x1), . . . , f (xm))T.

The adjoint of the sampling operator, ST
x : R

m → HK , is
given by

ST
x c =

m∑
i=1

ci K (xi , ·), c = (ci )
m
i=1 = (c1, . . . , cm)T ∈ R

m .

By means of the reproducing property f (x) = 〈 f, K (x, ·)〉K,
we know

∂
(Ez( f ) + λ‖ f ‖2

K

)
∂ f

= 4

(
1

m2 ST
x DSx + λ

2
I

)
f

− 4

m2 ST
x DY.

Then, fz is given by the solution
(∂(Ez( f ) + λ‖ f ‖2

K )/∂ f ) = 0. That is to say fz,λ satisfies

(
1

m2 ST
x DSx + λ

2
I

)
fz = 1

m2 ST
x DY. (10)

By the properties of RKHS, we know the solution of
optimization problem (4) can be denoted by a linear
span of the kernel functions {K (xi , ·)}m

i=1. That is

to say fz = ∑m
i=1 αz,i K (xi , ·) = ST

x αz for some
αz = (αz,1, . . . , αz,m )T ∈ R

m . Then, from (10), we have

(
DSx ST

x + λm2

2
I

)
αz = DY.

The desired result follows from Sx ST
x α = Kα.
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APPENDIX B
PROOF OF THEOREM 1

Proof: First, recall some basic properties for the
Mercer Kernel. Let L K : L2

ρX → L2
ρX be an operator

associated with a Mercer kernel K defined as

L K f (x) =
∫
X

K (x, u) f (u)dρX (u), x ∈ X .

Denote {φt
k}k≥1 as the orthonormal basis of L2

ρX
consisting of

eigenfunctions of L Kt and denote {λt
k}k≥1 as their correspond-

ing eigenvalues. Note that, for any ft ∈ HKt , ft = ∑∞
k=1 ct

kφ
t
k

and ‖ f ‖2
Kt

= ∑∞
k=1((c

t
k)

2/λt
k).

For each s ≥ 1 and f = ∑l
t=1 ft , we have

∂
(Ez( f ) + λ‖ f ‖2

H⊕,v

)
∂ct

k

= − 2

m2

m∑
i, j=1

(yi − y j − ( f (xi ) − f (x j )))

· (φt
k(xi) − φt

k(x j )) + 2λvt ct
k

λt
k

.

By setting the above equation equal to 0, we obtain

ct
k = λt

k

m2λvt

m∑
i, j=1

(yi − y j − ( f (xi ) − f (x j )))

· (φt
k(xi ) − φt

k(x j )
)
.

Then

ft (x) =
∞∑

k=1

λt
k

m2λvt

m∑
i, j=1

(yi − y j − ( f (xi ) − f (x j )))

·(φt
k(xi ) − φt

k(x j )
)
φt

k

= 1

m2λvt

m∑
i=1

Kt (xi , x)

×
(

yi − 1

m

m∑
j=1

y j −
l∑

s=1

m∑
k=1

at
k

×
(

Ks(xk, xi ) − 1

m

m∑
j=1

Ks(xk, x j )

))
.

From the properties of RKHS, we know ft =∑m
i=1 αt

i Kt (xi , x). Hence

αt
i = 1

m2λvt

(
yi − 1

m

m∑
j=1

y j −
l∑

s=1

m∑
k=1

at
k

(
Ks(xk, xi )

− 1

m

m∑
j=1

Ks(xk, x j )

))
.

Then, the desired result follows by denoting αt =
(αt

1, . . . , α
t
m )T.

APPENDIX C
PROOF OF PROPOSITION 2

The main tool used here is the McDiarmid’s inequality.
Lemma 2 (McDiarmid’s Inequality): Let x1, . . . , xn be

independent random variables taking values in a set A , and
assume that φ : A n → R satisfies

sup
x1,...,xn,x̃i∈A

|φ(x1, . . . , xn) − φ(x1, . . . , x̃i , . . . xn)| ≤ bi

for every 1 ≤ i ≤ n. Then, for every ε > 0

Prob{φ(x1, . . . , xn) − Eφ ≥ ε} ≤ exp

{
− 2ε2∑n

i=1 b2
i

}
.

Now, we present the proof of Proposition 2.
Proof: Let z = {zi }m

i=1 ∈ Zm and zk =
(z1, . . . , zk−1, z′

k, zk+1, . . . , zm). Denote φ(z) = E�
z ( f �

γ,⊕),
then Eφ(z) = E�( f �

γ,⊕). From the definition of f �
γ,⊕, we

get ‖ f �
γ,⊕‖∞ ≤ κ

√
l D⊕,v (γ )/γ . Then, for any 1 ≤ k ≤ m,

we have

φ(z) − φ(zk)|
≤ 2

m(m − 1)

∑
i �=k

∣∣�( f �
γ,⊕, zi , z j

) − �
(

f �
γ,⊕, zk, z j

)∣∣ ≤ 2M1

m
.

According to the McDiarmid inequality, for any ε > 0,
we obtain

Prob
z∈Zm

{E�
z
(

f �
γ,⊕

) − E�
(

f �
γ,⊕

) ≥ ε
} ≤ exp

{−mε2

2M2
1

}
.

The desired result follows by setting
δ = exp{(−mε2/2M2

1 )}.

APPENDIX D
PROOF OF PROPOSITION 3

Proof: With the same fashion in the proof of
Proposition 2, we can get for any f ∈ B⊕,v,R

Prob
{E�( f ) − E�

z ( f ) ≥ ε
} ≤ exp

{
− mε2

2M2
2

}
.

Now, we turn to the technique in [14] to obtain the uniform
convergence estimate. Let J = N (B⊕,v,R, (ε/4L)) and fi ,
1 ≤ i ≤ J be the centers of disks D j such that B⊕,v,R ⊂
∪J

i=1 Di . Note that, for all f ∈ D j and z ∈ Zm

∣∣E�( f ) − E�
z ( f ) − (E( f j ) − E�

z ( f j )
)∣∣ ≤ 2L‖ f − f j‖∞ ≤ ε

2
.

Then

sup
f ∈D j

(E�( f ) − E�
z ( f )

) ≥ ε ⇒ E( f j ) − E�
z ( f j ) ≥ ε

2
.

That is to say

Prob
z∈Zm

{
sup
f ∈D j

(E�( f ) − E�
z ( f )

) ≥ ε

}

≤ Prob
z∈Zm

{
E( f j ) − E�

z ( f j ) ≥ ε

2

}
≤ exp

{
− mε2

8M2
2

}
.
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Note that

Prob
z∈Zm

{
sup

f ∈B⊕,v,R

(E�( f ) − E�
z ( f )

) ≥ ε

}

≤
J∑

j=1

Prob
z∈Zm

{
sup
f ∈D j

(E�( f ) − E�
z ( f )

) ≥ ε

}
.

Hence

Prob
z∈Zm

{
sup

f ∈B⊕,v,R

(E�( f ) − E�
z ( f )

) ≥ ε

}

≤ N
(

B⊕,v,R,
ε

4L

)
exp

{
− mε2

8M2
2

}
.

Combining the above estimate with ‖ f �
z,⊕‖⊕,v ≤ M/

√
γ ,

we derive the desired result.

APPENDIX E
PROOF OF THEOREM 2

The proof of Theorem 2 is dependent on the following
lemma established in [15].

Lemma 3: Let c1, c2 > 0 and p1 > p2 > 0. Then, the
equation

x p1 − c1x p2 − c2 = 0

has a unique positive zero solution x∗. In addition

x∗ ≤ max
{
(2c1)

1
p1−p2 , (2c2)

1
p1

}
.

Now, we present the proof of Theorem 2.
Proof: From [41, Lemma 3], we know

N (B⊕,v,R, ε/(4L)) ≤ ∏l
t=1 N (BKt ,R, ε/(4l L). Moreover,

N (BKt ,R, ε/(4l L)) ≤ N (BKt ,1, ε/(4l L R)). Observe that
ln(N (B1, η)) ≤ Cd(η−s + μ−2(d+1)) has been presented
in [16]. Here, Cd is a parameter depending on d and s > 0
is a parameter, which can be arbitrarily small.

Setting
∏l

t=1 N (BKt ,1, ε/(4l L R) exp{−(mε2/8M2
2 )}=δ/2,

we get

Cdl

(
ε

4l L R

)−s

+ Cd

l∑
t=1

μ
−2(d+1)
t − mε2

2M2
2

− ln(2/δ) ≥ 0.

Then

ε2+s − 2M2
2

m

(
Cd

l∑
t=1

μ
−2(d+1)
t + ln(2/δ)

)
εs

− 2Cdl M2
2 (4l L R)s

m
≤ 0. (11)

Denote p1 = 2 + s, p2 = s, c1 = (2M2
2 /m)

(Cd
∑l

t=1 μ
−2(d+1)
t + ln(2/δ)), and c2 =

(2Cdl M2
2 (4l L R)s/m). Now, take the equality in (11)

to obtain the equation

ε p1 − c1ε
p2 − c2 = 0.

Based on Lemma 3, this equation has only one positive zero ε∗
satisfying that

ε∗ ≤ max
{
(2c1)

1
p1−p2 , (2c2)

1
p1

}
.

Therefore, from Proposition 3 and ‖ f �
z,⊕‖⊕,v ≤ (M/

√
γ ), we

have

E(
f �
z,⊕

) − E�
z
(

f �
z,⊕

)

≤ max

⎧⎪⎨
⎪⎩

2M2√
m

(
Cd

l∑
t=1

μ
−2(d+1)
t + ln(2/δ)

) 1
2

×
(

4Cdl M2
2 (4l L R)s

m

) 1
2+s

⎫⎪⎬
⎪⎭ (12)

with confidence at least 1 − δ/2, where R = (M/
√

γ ).
Combining estimate (12) with Propositions 1 and 2, we get
the statement in Theorem 2.
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